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Our purpose in this paper is to provide the framework for a generalization of
classical mechanics and electrodynamics , including Maxwell’ s theory, which is
simple, technically correct, and requires no additional work for the quantum case.
We first show that there are two other definitions of proper-time, each having
equal status with the Minkowski definition. We use the first definition, called
the proper-velocity definition, to construct a transformation theory which fixes
the proper-time of a given physical system for all observers. This leads to a new
invariance group and a generalization of Maxwell’ s equations left covariant under
the action of this group. The second definition, called the canonical variables
definition, has the unique property that it is independent of the number of particles.
This definition leads to a general theory of directly interacting relativistic particles.
We obtain the Lorentz force for one particle (using its proper-time), and the
Lorentz force for the total system (using the global proper-time). Use of the
global proper-time to compute the force on one particle gives the Lorentz force
plus a dissipative term corresponding to the reaction of this particle back on the
cause of its acceleration (Newton’ s third law). The wave equation derived from
Maxwell’ s equations has an additional term, first order in the proper-time. This
term arises instantaneously with acceleration. This shows explicitly that the long-
sought origin of radiation reaction is inertial resistance to changes in particle
motion. The field equations carry intrinsic information about the velocity and
acceleration of the particles in the system. It follows that our theory is not invariant
under time reversal, so that the existence of radiation introduces an arrow for
the (proper-time of the) system.
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1. INTRODUCTION

1.0. Background

A major problem in the foundations of quantum field theory has been

the identification of a mathematical meaning for the Feynman time-ordered

operator calculus, which was developed in the 1950s for the study of quantum

electrodynamics (Feynman, 1949, 1950, 1951). The idea was to deal directly
with the solutions to the equations describing the system, rather than the

equations themselves. This approach requires an overall space-time point of

view, which means that we view a physical event as occurring on a film in

which we are more aware of the outcome as more of the film comes into

view. This led Feynman to consider time histories (paths) as the primary

objects of physical concern. He noticed that the major difficulty in handling
complex expressions was due to a ª mathematical conventionº ; namely, that
position on paper identifies ª whenº (a physical process) an operator oper-
ates. He showed that letting time act as both a physical quantity and as an

index to determine the order of operators in a product permits considerable

ease in operator manipulation.
Although Dyson (1949) proved the equivalence of Feynman’ s formula-

tion of quantum electrodynamics to that of Schwinger and Tomonaga, Feyn-

man’ s approach was both highly physical and easy to use [see Schweber

(1986) for a historical review]. Since then, this approach has provided new

mathematical and physical insights, and is the method of choice in many

branches of physics. This method is also popular because it has the additional
advantage of providing a direct relationship with our conscious view of the

world. Feynman’ s approach raises the question as to whether or not it is

possible to construct mathematical representations of physical reality which

correspond to the way the world appears to us.

It was noted by Dirac (1963) that ª the picture with four-dimensional

symmetry does not give us the whole situation. . . .º Quantum theory has
taught us that we must take a three-dimensional section of what appears to

our consciousness at one time (an observation) and relate it to another three-

dimensional section at another time. In reviewing attempts to merge gravita-

tion with quantum theory, Dirac goes on to question the fundamental nature

of the four-dimensional requirement in physics and notes that in some cases

physical descriptions are simplified when one departs from it.
In a series of papers (Gill, 1981, 1983; Gill and Zachary, 1987), we

were able to show that a natural algebraic and analytic framework known as

a Feynman ± Dyson algebra could be constructed for the implementation of

Feynman’ s program while retaining all of its intuitive content. The methods
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make it possible to show (as Feynman suggested) that the path integral is a

special case of the operator calculus. We were also able to prove the Dyson

conjecture (Dyson, 1952) that the renormalized perturbation expansion of
quantum electrodynamics does not converge, but is asymptotic. To be precise,

we showed that the perturbation expansion is asymptotic in the sense of

PoincareÂ, as the term is used in the theory of semigroups of operators (Hille

and Phillips, 1957).

Our successful construction of the Feynman time-ordered operator calcu-

lus, its intuitive physical content, and our ability to prove the Dyson conjecture
convinced us that the use of time as a fourth coordinate may well be a major

cause of problems in attempts to merge relativity with quantum mechanics.

With the above motivation, we decided to go back and take another

look at the foundations of the theory of relativity with an eye toward under-

standing why the use of time as a fourth coordinate arose and the extent of

its necessity. (This is, of course, independent of the fact that time is a fourth
dimension.) It turns out, after close analysis, that this is a third postulate
introduced by Minkowski (1909) as the correct way to implement the first
two postulates of Einstein (1905):

1. The physical laws of nature and the results of all experiments are

independent of the inertial frame of the observer.
2. The two-way speed of light (relative to all inertial observers) is

constant.

We have made a change in the second postulate to more precisely reflect

what is known about the speed of light (Selleri, 1993; Selleri and Goy, 1997).

1.1. Purpose

This paper is a sequel to Gill and Lindesay (1993) and Gill et al (1997)

(see also Gill et al, 1994, 1996). Here, we construct a canonical proper-

time theory for relativistic particle dynamics which satisfies the above two

postulates and yet does not use time as a fourth coordinate. Our purpose
is to provide the basics for a generalization of classical mechanics and

electrodynamics, including Maxwell’ s theory, which is simple, technically

correct, and requires no additional work for the quantum case.

In the remainder of this section, we introduce some new material. How-

ever, our primary focus is to provide enough background so as to make

the paper self-contained. We discuss three definitions of velocity and three
definitions of proper-time that arise in the special theory. We then derive a

direct representation of the transformations that fix the proper-time of a given

observed system for all observers. This new group is closely related to, but

distinct from, the Lorentz group. We then give a heuristic derivation of the
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free particle theory using the third definition of proper-time, so that the

reader may have a complete overview of our approach at an elementary (but

nonrigorous) level.
In Section 2, we provide a brief introduction to the theory of isotopes

as the creation of geometry by physical interaction. The presentation is

elementary, including easy examples, so that the reader can see both the

physics and the mathematics. This theory (Santilli, 1983) is based on the

introduction of a change in the definition of the product at the Lie algebra

level caused by physical interactions and induces a change in the geometric
and the analytic structure at all levels.

In Section 3, we show that the isotope methods are natural in our case.

We construct a theory of directly interacting particles without treating time

as the fourth component of a four-vector. We first discuss the global world

view of the many-particle system in which the observer can treat the system

as one particle. We prove that our theory preserves the PoincareÂ±Cartan
invariant and then show that the proper-time change of variables (canonical)

is formed by a similarity action of the proper-time (contact) group on the

PoincareÂgroup. We derive the global position vector for the system, show

that it satisfies the expected commutation relations, and derive a global

Lorentz force equation with few restrictions. After showing that our theory
has the cluster decomposition property, we use it to prove that the universe

has a unique proper-clock and (canonical) Hamiltonian which is available to

all observers (although the universe has no preferred reference frame).

In Section 4, we consider the (local) world view of one particle in the

many-particle system, using its proper-clock. In this case, we get the expected

Lorentz force whose form can be reduced to the one that our inertial observer
would obtain using his clock and the standard Hamiltonian. The only differ-

ence is that the local metric is not flat in a neighborhood of the particle. We

show that, within this framework, the total local energy is conserved. It was

shown by Gill et al (1997) that the local fields produced by a charged particle

have a dissipative term that depends instantaneously on the acceleration. We

show that the corresponding potentials and fields carry intrinsic information
about the particle’s past motion and that the electromagnetic waves have an

effective mass.

In Section 5, we consider the global world view of one particle using

the global proper-clock. We see that at this level the particle energy is not

conserved. We derive a generalized Lorentz force which contains the local

Lorentz force plus an additional dissipative force representing the reaction
of the particle back on the other particles in the system. We then construct

the field equations from the global point of view and show that the whole

system of particles lives in a heat bath of radiation. This radiation will

distribute itself thoughout the domain of the system. At no point do we make
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any assumptions about the structure of the particles in the system. Thus, our

theory is structure-independent. As in the Wheeler±Feynman theory, there

is no need to consider the interaction of particles with themselves.
In Section 6, we show that our theory is not invariant under time reversal

and thus introduces a natural arrow for the proper-time of the system. We

conclude with a comparison of the Minkowski and proper-time approaches.

1.2. Velocity in Special Relativity

As noted by LeÂvy-Leblond (1980), velocity is one of the first examples

of the process in which an empirical idea is transformed into a formal concept

via mathematization. Indeed, Galileo’s constructive definition of velocity was

a necessary requirement for his other work. The unique definition of velocity
in Galilean relativity becomes three possibilities in special relativity:

w1 5 dx/dt, u 5 dx/d t , w2 5 #
t

0

dw1

1 2 (w1/c)2 . (1.0)

The velocities w1 and u are well known; w1 represents a definition based

solely on all external measurements, and u represents a definition based on

external measurement of distance and internal measurement of time. On the

other hand, w2 represents a definition based solely on internal measurements.

The latter may appear to lack operational meaning. However, the design of

ballistic missiles with internal guidance systems operationalizes this definition
using an accelerometer.

LeÂvy-Leblond provides a clear operational analysis of these three defini-

tions. His work shows that each definition can be used in defining velocity

and indirectly raises the physical question: Which velocity is most useful in
understanding physical systems? By this we mean: Which of these definitions

of velocity is most useful in constructing representations of physical reality
that are direct, simple, and consistent with experiment?

Minkowski’ s introduction of time as a fourth coordinate and his discov-

ery of proper-time has tended to link these two distinct concepts, and thus

helped to cloud the issue of velocity in special relativity. There is a continuous

mixture of both the first and the second definition in all aspects of the special
theory and its applications.

1.3. Proper-Time

We consider three definitions for the proper-time of a physical system.

A priori, each definition has equal status from the point of view of the special

theory of relativity. To provide a framework, let us consider (for simplicity)

two inertial observers X and X8 with the same orientation. We further assume
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that the (proper) clocks of X and X8 both begin when their origins coincide.

Assuming that X8 is moving with uniform velocity v as seen by X, let the

source of an electromagnetic field whose velocity was zero at time t 5 t8 5
0 move with velocity w as seen by X and velocity w8 as seen by X8. It

follows that

x8 5 x 2 g (v)vt 1 ( g (v) 2 1)(x ? v/|v|2)v, t8 5 g (v)(t 2 x ? v/c 2), (1.1a)

x 5 x8 1 g (v)vt8 1 ( g (v) 2 1)(x8 ? v/|v|2)v, t 5 g (v)(t8 1 x8 ? v/c 2), (1.1b)

with g (v) 5 1/[1 2 (v/c)2]1/2, represent the Lorentz transformations between
our two observers.

1.4. The Minkowski Definition

The first and best-known definition of proper-time is due to Minkowski

(1909): d t 5 g [w(t)] dt and d t 5 g [w(t8)] dt8. Minkowski wrote this as

(d t )2 5 (dt)2 2 (1/c2)(dx)2 5 (dt)2[1 2 (w/c)2], w 5 dx/dt; (1.2a)

(d t )2 5 (dt8)2 2 (1/c2)(dx8)2 5 (dt8)2[1 2 (w8/c)2], w8 5 dx8/dt8. (1.2b)

This leads to the world-line postulate and Minkowski space. It is a natural

approach to the implementation of the first two postulates using Lorentz

invariance.

1.5. The Proper-Velocity Definition

A transparent way to view this case is to begin with Minkowski’ s

definition (1.2) and rewrite it as

(dt)2 5 (d t )2 1 (1/c 2)(dx)2 5 (d t )2[1 1 (u/c)2], u 5 dx/d t . (1.3a)

In this case, the observer in the X 8 frame will have

(dt8)2 5 (d t )2 1 (1/c 2)(dx8)2 5 (d t )2[1 1 (u8/c)2], u8 5 dx8/d t . (1.3b)

This raises the possibility that the dynamics of special relativity can be

formulated in Euclidean space provided we standardize the definition of

velocity (proper-velocity of the source) for all observers. In this case, since

t is the same for all observers, there is no gain in making it a fourth coordinate.

We must now, however, prove that the first two postulates are satisfied.
Recently, Montanus (1997) has used (1.3a) to formulate a version of general

relativity in flat space-time.

If w is constant, we have from (1.1) and (1.3) that t 5 d (u) t and t8 5
d (u8) t , so that
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x8 5 x 2 g (v)v d (u) t 1 ( g (v) 2 1)(x ? v/|v|2)v, (1.4a)

x 5 x8 1 g (v)v d (u8) t 1 ( g (v) 2 1)(x8 ? v/|v|2)v. (1.4b)

In the general case, w is not constant, so that

t 5 #
t

0

d [u(s)] ds, t8 5 #
t

0

d [u8(s)] ds. (1.5a)

It follows that t (or t8) is nonlocal as a function of t in the sense that the

value depends on the particular physical history (proper-time path) of the

source. Setting

L (h) 5
1

t #
t

0

d [h(s)] ds, (1.5b)

our transformations between observers become

x8 5 x 2 g (v)v L (u) t 1 ( g (v) 2 1)(x ? v/|v|2)v, (1.6a)

x 5 x8 1 g (v)v L (u8) t 1 ( g (v) 2 1)(x8 ? v/|v|2)v, (1.6b)

u8 5 u 2 g (v)v d (u) 1 ( g (v) 2 1)(u ? v/|v|2)v, (1.6c)

u 5 u8 1 g (v)v d (u8) 1 ( g (v) 2 1)(u8 ? v/|v|2)v, (1.6d)

a8 5 a 2 g (v)
v(a ? u)

d (u)c2 1 ( g (v) 2 1)(a ? v/|v|2)v, (1.6e)

a 5 a8 1 g (v)
v(a8 ? u8)

d (u8)c2 1 ( g (v) 2 1)(a8 ? v/|v|2)v, (1.6f)

where a (a8) is the particle proper-(three) acceleration. It should also be noted

that, by the mean value property for integrals, we can find a unique s( t ) for

each t , with 0 , s( t ) , t , such that u t 5 u( t 2 s( t )) and L (u) 5 d (u t ). It

is clear that this property is observer-independent since

t8 5 g (v)(t 2 x ? v/c 2) Þ L (u8) 5 g (v)( L (u) 2 x ? v/c 2). (1.6g)

With the above approach, we also provide the only rational solution to the

problem of distant simultaneity. It is clear that all observers have the option

of using their individual clocks with no hope of agreeing on the time occur-
rence of any event associated with the source. On the other hand, if each

observer agrees to use the proper-clock of the source, we see from (1.4) that,

although they will not agree on the proper-velocity of the source, they will

always agree on the time occurrence of any event associated with the source.
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1.6. The Canonical Variables Definition

The canonical definition is the only one of the three that is independent
of the number of particles. It originated in Gill and Lindesay (1993) as an

attempt to define proper-time in quantum theory. The problem is that, although

dt/d t makes sense in the classical case, it becomes an operator upon quantiza-

tion. To see this, use the fact that

H 5 mc2[1 2 (w/c)2] 2 1/2 5 ! c2p2 1 m2c4 Þ (1.7)

d t 5 (mc2/H ) dt 5 mc2( ! c2p2 1 m2c4) 2 1/2 dt. (1.8)

It was shown that this approach can work if we treat the transformation at
the classical level as a canonical change of variables. To see how this is

done in the free case, let W be any classical observable so that the Poisson
bracket defines Hamilton’ s equations in the X frame by

dW

dt
5

- H

- p

- W

- x
2

- H

- x

- W

- p
5 {H, W }, (1.9a)

so that:

dx

dt
5

- H

- p
,

dx

dt
5 2

- H

- x
, H 5 ! c2p2 1 m2c4. (1.9b)

Next, using dt 5 (H /mc2) d t , we find the time evolution of the function W
by the chain rule:

dW

d t
5

dW

dt

dt

d t
5

H

mc2 {H, W }. (1.10a)

The energy functional K conjugate to the proper time t must therefore satisfy

{K, W } 5
H

mc2 {H, W }. (1.10b)

The most general solution is

K 5 mc2 1 #
H

mc2
(dt/d t ) dH 8 5 mc2 1 #

H

mc2
(H 8/mc2) dH 8. (1.11)

If the mass m is fixed and we allow the Lorentz frame to vary, we get

K 5
H 2

2mc2 1
mc2

2
5

p2

2m
1 mc2. (1.12)

This form of the Hamiltonian looks like the nonrelativistic case, but is fully

relativistic and eliminates the problems associated with the troubling square
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root in the standard implementation. If we hold P 5 P0 fixed and allow the

Lorentz frame H and m to vary, we get (H dH 5 m dm c 4)

K 5 mc2 5 ! H 2 2 c2P2
0. (1.13)

This then is the appropriate Hamiltonian in the constant-momentum frame.

If we fix the Lorentz frame, then H /mc2 is constant and we get

K 5
H 2

mc2 5
p2

m
1 mc2. (1.14)

The form (1.14) was used by Gill (1982) to give a particle representation

for the Klein±Gordon equation with positive probability density and with

proper-time as an operator. Equation (1.13) is the form used to associate

proper-time with the (off-shell) mass operator in parametrized relativistic

quantum theories. See Aparicio et al (1995a, b) for a complete discussion
of this case, and Gaioli and Garcia-Alvarez (1994) for a review of the problems

associated with parametrized theories. Equation (1.12) has the advantage that

it produces a clear relationship with the nonrelativistic case. We can prove

that both (1.12) and (1.14) have generators and hence are true canonical

transformations at the classical level. We have not constructed a canonical
generator for (1.13). However, see Bakamjian and Thomas (1953). In the

present paper, we focus on (1.12).

2. ISOTOPES AND PHYSICAL VARIABLES

The purpose of this section is to introduce a new approach to the inclusion

of geometry in physics and to use this approach to construct our theory of

interacting systems. The name isotope was coined by Santilli (1978, 1983,

1993b, and references therein). Briefly, an isotope can be thought of as a

new way of relating the same or different physical systems due to a change

in either the internal or the external environment . We do not seek the level
of generality advocated by Santilli, nor does our final product fit all of

Santilli’s requirements. However, in the restricted domain of our objectives,

we hope to make these ideas available to a larger audience. This section

should be considered introductory. We therefore strongly urge the interested

reader to consult the original literature. A good starting point is the recent

papers by Santilli (1996) and Kadesvili (1996). For a complete treatment,
see Sourlas and Tsaras (1993).

The most efficient approach is to begin with an example which reveals

all the essential mathematical issues. Let us consider the Lie algebra so(n)

of real n 3 n skew-symmetric matrices with the standard product:
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[A, B] 5 AB 2 BA for A, B in so(n). (2.1)

If T is a symmetric, invertible, real n 3 n matrix, then we can define a new
product on so(n):

[A, B]* 5 A * B 2 B * A 5 ATB 2 BTA. (2.2)

Since A t 5 2 A, B t 5 2 B, and T t 5 T, it is easy to see that [A, B]* is in

so(n), so that so(n) is closed under the new product. It is straightforward to

check that the new product satisfies the Jacobi identity so that (so(n), 1 ,

[ ? , ? ]*) is a Lie algebra. This is a particular case of a Lie±Santilli isotopic
algebra, so-named because the early study of such algebras and the continued

emphasis on their importance for mathematics and physics has been cham-

pioned by R. M. Santilli for the last 20 years.

It is clear that, if we change the product at the algebraic level, this

implies a corresponding change in the product at other levels. In particular,

if I is the identity in the standard case, so that I ? I 5 I, then with the new
product * , we must find IÃsuch that IÃ* IÃ5 IÃ. This implies that IÃ5 T 2 1. Let

us fix T and let A P so(n). To see what this change implies for the group,

we construct the universal enveloping algebra. This allows for the generalized

exponentiation necessary to identify the new group. In our case, it is easy

to check that

g(s) 5 IÃ1 sA 1
1

2!
(sA) * (sA) 1

1

3!
(sA) * (sA) * (sA) 1 ? ? ?

5 IÃ(exp{sTA}) 5 (exp{sAT})IÃ (2.3)

satisfies

d

ds
g(s) | s 5 0 5 A. (2.4)

It follows that g(s) is a one-parameter curve in the group associated with the

new product. Let us denote the two groups and their algebras by

G1 5 (SO(n), ? ), g1 5 (so(n), 1 , [ ? , ? ]), (2.5)

G2 5 (SO(n), * ), g2 5 (so(n), 1 , [ ? , ? ]*). (2.6)

Since the properties of G1 are well-known, let us see what is new about G2.

First we note that (2.4) shows that g2 is the algebra for G2 and

g(s)t * g(s) 5 (IÃexp{sTA})t * IÃ(exp{sTA}) 5 exp{sA tT}IÃT exp{sAT}IÃ

5 exp{ 2 sAT} exp{sAT}IÃ5 IÃ, (2.7a)

so that:
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g(s)t * g(s) 5 IÃ. (2.7b)

This means that for X in R n:

(g(s) * X )t * (g(s) * X ) 5 X t * X 5 X tTX. (2.8)

We now see that the isotopic change at the algebraic level induces a corres-
ponding change in the inner product at the vector space level.

Before going further, let us consider a (more) concrete case. Take n 5
3 and:

T 5 3
1 0 0

0 2 1 0

0 0 1 4 , IÃ5 3
1 0 0

0 2 1 0

0 0 1 4 , X 5 3
x1

x2

x3 4 Þ (2.9)

X t * X 5 X tTX 5 x2
1 2 x2

2 1 x2
3. (2.10)

This means that G2 5 (SO(3), * ) is isomorphic to (SO(2, 1), ? ). Since (SO(3),

? ) is compact while (SO(2, 1), ? ) is noncompact, this is a nontrivial result. It
implies that we can study noncompact groups via their isotopic relationship

to the corresponding compact groups. See Sourlas and Tsaras (1993).

In order to understand the geometric and analytic sides of this example,

consider the following two Hamiltonians:

H1 5
1

2m
P tP 1

k

2
X tX 5

1

2m
(p2

1 1 p2
2 1 p2

3) 1
k

2
(x2

1 1 x2
2 1 x2

3), (2.11)

H2 5
1

2m
P t * P 1

k

2
X t * X 5

1

2m
(p2

1 2 p2
2 1 p2

3) 1
k

2
(x2

1 2 x2
2 1 x2

3). (2.12)

A simple calculation shows that both H1 and H2 lead to Newton’ s equations

of motion for a (3-dimensional) harmonic oscillator, F 5 2 kX. Clearly, H1

is invariant under SO(3), while H2 is invariant under SO(2, 1). It is easy to

see that both H1 and H2 are conserved, and are in involution (i.e., their

Poisson bracket is zero). This is an example of a bi-Hamiltonian structure
for the oscillator.

The above example is not of physical interest since we cannot identify

the second Hamiltonian as a sum of the (physical) kinetic and potential

energies of the system. A more interesting example corresponds to the same

harmonic oscillator in two different media, say when H1 corresponds to the

vacuum case and the isotope H2 corresponds to a medium whose physical
properties change as a function of spatial position, direction, and time. In

this case, T will be a general matrix-valued function of X and t at each point

of R 3. It is clear that, in this case, the effective physical impact is to create

a change in the geometric properties of the space R 3 locally (the metric
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changes at each point). In our theory, T arises because of the introduction of

interaction. This will be discussed further in the next section.

Let H be a given Hamiltonian with Poisson bracket {,} and let T 5
T ({xi}, {pi}) be a transformation such that:

{H, ? } 5 o
n

i 5 1

- H

- pi

-
- xi

2
- H

- xi

-
- pi

® {H, ? }T 5 o
n

i 5 1

- H

- pi

T
-

- xi

2
- H

- xi

T
-

- pi

.

(2.13)

Definition 2.1. We say that T generates an isotope of physical class I if

it is symmetric, nonsingular, and leaves the equations of motions invariant.

Definition 2.2. We say that T generates an isotope of physical class II
if it is symmetric and nonsingular.

Definition 2.3. We say that T generates an isotope of physical class III
if it is symmetric.

Our classification is not as general as that of Kadesvili (1996), but is

sufficient for our work. The physical and mathematical foundations may be

found in Santilli (1993a). See also Bogoyavlenskij (1995), who arrived at a
definition closely related to Definition 2.1 while studying invariant incompati-

ble Poisson structures for completely integrable Hamiltonian systems. The

physical classes II and III represent a change in the external and/or internal

physical environment, and arise because of interactions. Isotopes of physical

class I arise naturally in the study of the inverse problem of the calculus

of variations (Santilli 1983). These classes led Santilli to distinguish the
possibilities by noting that the coordinates used should represent the physical
variables available to the experimenter in his frame of reference (the San-
tilli principle).

The next section is completely devoted to isotopes of class II. Let us

close this section with an instructive example of an isotope of class III.

Let T 5 T(t) 5 (a(t)x 2 1 b(t)( y2 1 z 2)) 2 1/2, ^ r, r & T 5 T(t)(x 2 1 y2 1
z 2), where a(t) 5 1 1 3t and b(t) 5 1 2 t. If we constrain our norm to

satisfy ^ r, r & T 5 1, for t in [0, 1], we have at t 5 0, a(t)x 2 1 b(t)( y2 1 z 2)

5 (x 2 1 y2 1 z 2)2 Þ (x 2 1 y2 1 z 2)(x 2 1 y2 1 z 2 2 1) 5 0. This is a unit

sphere (see Fig. 1). At t 5 1 we have ((x 2 1)2 1 y2 1 z 2 2 1)((x 1 1)2

1 y2 1 z 2 2 1) 5 0, which gives two unit spheres (touching). Figure 1

shows a few snapshots of the continuous change.
In the next section, we will explain how a Lorentz scalar potential energy

function of the type V(t, r) 5 2 mc[1 2 ! a(t)x 2 1 b(t)( y2 1 z 2)] can create

the above geometric effect while the effective Hamiltonian is of the harmonic

oscillator type.
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Fig. 1. Snapshots of continuous change.

3. GENERAL THEORY

3.1. Interaction

It is generally believed that the problem of interaction was resolved
when the potential energy was found to fit perfectly as the scalar component

of a four-vector and led to the ª principle of minimal interaction.º A detailed

study and classification of the problems with this approach at the quantum

level can be found in the book by Fushchych and Nikitin (1994). They show

that only for relativistic wave equations with spin s # 1/2 can one be assured

that no inconsistencies occur. For s $ 1 we have the following types of
problems (see Fushchych and Nikitin, 1994, pp. 117ff for details):

1. The equation becomes inconsistent.

2. The equation acquires redundant components making it impossible

to interpret as an equation for a spin-s particle.

3. The equations describe faster-than-light propagation.
4. The equations become inconsistent when applied to concrete

problems.

In order to introduce interaction in a consistent manner at all levels,
we introduce the following:

Postulate 3.1. The proper-time Hamiltonian becomes isotopically related
to the free case when interaction is turned on.

This postulate allows us to define proper-time uniquely at all levels by

treating interaction as an isotopic deviation from the free case which causes

a distortion of the local geometry of the system. We thus introduce geometry as
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a creation of (or by-product of) physical interactions. The important question is

whether this approach reproduces what we know and provides additional

insights that were not available before.

Examples. As examples, we consider the following two Hamiltonians:

H1 5 ! c2p2 1 (mc2 1 V )2, (3.1a)

H2 5 H02 1 V 5 ! c2p2 1 m2 c4 1 V, (3.2a)

corresponding to two different ways of describing particle interactions. Start-

ing as in Gill and Lindesay (1993), we have

1. d t 5 H mc2 1 V

H1 J dt,
dW

d t
5

H1

mc2 1 V
{H1, W }; (3.1b)

2. d t 5 H mc2

H02 J dt,
dW

d t
5

H02

mc2 {H2, W }. (3.2b)

Note that in both cases d t is derived from d t 5 ! 1 2 w2/c2 dt and hence

corresponds to the standard (unique) definition of proper-time. Set

T1 5
mc2

mc2 1 V
5

1

1 1 V /mc2 , (3.1c)

T2 5
H02

H2

5 I 2
V

H2

. (3.2c)

We then have:

K1 5
p2

2m
1 mc2 1 V 1

V 2

2mc2 , (3.1d)

dW

d t
5 {K1, W }T1 5

- K1

- p
T1

- W

- x
2

- K1

- x
T1

- W

- p
, (3.1e)

{xi , xj}T1 5 0, {pi, pj}T1 5 0, {xi , pj}T1 5 2 d ijT1, (3.1f)

K2 5
p2

2m
1 mc2 1 V

H02

mc2 1
V 2

2mc2 , (3.2d)

dW

d t
5 {K2, W }T2 5

- K2

- p
T2

- W

- x
2

- K2

- x
T2

- W

- p
, (3.2e)

{xi , xj}T2 5 0, {pi , pj}T2 5 0, {xi , pj}T2 5 2 d ijT2. (3.2f)

In the above two cases, the equations of motion become:



Relativistic Particle Dynamics 2587

1.
dx

d t
5 u 5

c2p

mc2 1 V
,

dp

d t
5 2 = V, (3.1g)

2.
dx

d t
5 u 5

p

m
,

dp

d t
5 2 = V

H02

mc2 5 2 = V ! 1 1 u2/c2.

(3.2g)

If mc2 À V, then T1 ’ I, and if H2
À V, T2 ’ I. As T1 5 (1 1 V /mc2) 2 1

and T2 5 (1 2 V/H2), if V represents an attractive potential, T1 is nonsingular

( Þ 1/0) as long as V Þ mc2, while T2 is nonsingular ( Þ 1/0) as long as V Þ
H02. Note that if either becomes singular, the (induced) metric becomes
meaningless. In the repulsive case, both T1 and T2 are always nonsingular.

The isotope T2 arises from our implementation of the principle of minimal

interaction, so the above result tells us that the curvature near particles

becomes extremely distorted as they get closer and closer together. It follows

that, in such cases, the physical properties in these regions will be very

different from what we find when particles are far apart. At the classical
level, this approach implements the principle of impenetrability; namely, that

no two particles can occupy the same space at the same time. As is well-

known, at the quantum level this principle is violated and results in pair

production and, in our case, this corresponds to an increase in the dimension

of the phase space along with other interesting physical and mathematical
phenomena that will be taken up at a later time.

There is an important difference which arises here that is distinct from

the methods of (differential) geometry. In the theory of symplectic manifolds,

given a Poisson structure defined on the smooth functions over a phase space,

{ f, g} 5 Aij f
ig j, f i 5 - f / - yi , g j 5 - g / - zj (summation convention), with Aij

skew symmetric and nonsingular, we can always find a canonical change of
variables, y 5 y(x, p), z 5 z(x, p) (locally at each point) such that the

transformed bracket represents the same geometry; and in the new variables,

{ f, g} 5 Jij f
ig j, J is the row matrix (0, 2 I; I, 0), f i 5 - f / - pi , g j 5 - g / - xj.

This is the content of Darboux’ s theorem (see Perelomov, 1990). In our case

this is not possible since T arises on physical grounds and the variables in

our theory must always be physical. To change them implies a change in the
underlying physics which requires ( physical) justification.

Applying our results for V (t, r) 5 2 mc2[1 2 ! a(t)x 2 1 b(t)( y2 1 z 2)]

( 5 2 mc2[1 2 r(t)]) in equations (3.1), we can now complete the last example

of Section 2. Note that K1 becomes:

K1 5
p2

2m
1

mc2

2
(1 1 r (t)2). (3.1h)

It is quite interesting that this is the Hamiltonian for a harmonic oscillator
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with a time-dependent anisotopic spring constant. The interesting physical

questions raised by this example will be taken up when we extend our results

to the quantum case.

3.2. Canonical Proper-Time Variables

As is well-known, attempts to construct a relativistic many-particle
theory led to the no-interaction theorem. Many believed the problem was

caused by the difficulty in understanding all the representations of the PoincareÂ

group. It was pointed out by Horwitz and Piron (1973) that the same difficulty

occurs in the Galilean case, where the problem is clear. The Galilean group

was interpreted as the group of motion from the active point of view. This

led to a representation for a free particle in the Heisenberg picture which
depends on the dynamics. Piron (1972) found that the best approach in this

case was to first choose the observables of the system and then construct the

dynamics. He showed that this approach naturally leads to the SchroÈ dinger

picture, which is independent of the dynamics.

Our approach to the choice of variables is based on two conditions:

1. The variables must be canonical.

2. The variables must be physical.

The first condition is required (in addition to algebraic, analytic, and geometric
conditions) because the origin of quantum mechanics is still mysterious and

we can only be on sure footing when we quantize canonical variables. The

second condition means that the variables must be operationally capable of

direct measurement in experiment. This condition is clear in light of our

discussion of isotopes in the last section.

The requirement of canonical variables is not as simple as it might first
appear. In his work on the foundations of mechanics, Santilli (1978) identified

eight different (nonequivalent) definitions of a canonical transformation, and

he noted that there are many other definitions in the literature. Thus, in order

to have a rational foundation for physics, we must provide a physically useful

and mathematically consistent definition of a canonical transformation of

variables. This issue acquires additional importance in our case since we
want to transform the time variable.

Definition 3.1. A C 2 map of the variables ({xi}{pi}, t, H ) ® ({Xi}{P i},

t , K ) is an isocanonical contact mapping provided there are functions S, T,

with K ? d t 5 KTd t and

o
n

i 5 1
pi ? dxi 2 H dt 5 o

n

i 5 1
Pi ? dXi 2 K ? d t 1 dS. (3.3a)

The following result is proven in Arnol’ d (1978, p. 241).
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Theorem 3.2. Let ({Xi}{P i}, t ) be a coordinate system on the extended

phase space ({xi}{pi}, t). If functions K (X i , Pi , t ), S (Xi , Pi , t ), and T (Xi , Pi ,

t ) exist such that

o
n

i 5 1
pi ? dxi 2 Hdt 5 o

n

i 5 1
Pi ? dXi 2 K ? d t 1 dS. (3.3b)

Then the trajectories of the phase flow represented by the right-hand side

are represented in the ({xi}, {pi}, t ) chart by the integral curves of the

canonical equations:

dXi

d t
5 T

- K

- Pi

,
dP i

d t
5 2 T

- K

- Xi

. (3.3c)

3.3. Global System Representation

We assume that there are n interacting particles which can be repre-

sented via:

H 5 o
n

i 5 1
Hi 5 H0 1 V, H i 5 H0i 1 Vi, (3.4a)

H0i 5 ! c2 p 2
i 1 m2

i c4, p i 5 pi 2
ei

c
Ai, (3.4b)

H0 5 o
n

i 5 1
H0i, V 5 o

n

i 5 1
Vi, A 5 o

n

i 5 1
Ai, (3.4c)

where for our purposes, the ei /c Ai terms may be viewed as general vector

potentials to be defined in particular cases. However, we assume only direct

interactions without self-interactions, so that they have the form:

Ai 5 o
i Þ j

Aij( | xi 2 xj | , t ), Vi 5 o
i Þ j

Vij( | xi 2 xj | , t ). (3.4d)

Choose q (assumed Þ 0) so that

(q /c)A 5 o
n

i 5 1
(ei /c)Ai . (3.4e)

Set F i [ (1/ei)Vi , F [ (1/q)V, M0 5 S m i , and define M and W by

M0c
2 1 W 5 Mc2 5 ! H 2

0 2 c2 P 2, (3.5a)

where P 5 P 2 (q /c)A, and P is the momentum of the system (P 5 S pi).

It follows that
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W 5 M0c
2 o

n

i,j;i Þ j
! 1 1 (hij 2 m ij), (3.5b)

hij 5
1

M 2
0c

4 (H0i H0j 2 c2 p i ? p j), m ij 5
1

M 2
0

(mi mj), (3.5c)

H 5 ! c2 P 2 1 (M0c
2 1 W )2 1 V. (3.5d)

Our definition of H closely corresponds to the one-particle case with minimal
interaction. This differs only slightly from the Bakamjian±Thomas (1953)

approach and reduces to it in the free case. We have treated the off-mass-

shell part of M as a Lorentz scalar potential, and have allowed interaction

to be introduced in the normal way (which they were forced to abandon).

Our theory has the additional advantage that it is not constrained by the
world-line postulate (which they considered unnecessary).

In this case, we take

d t 5
Mc2

H0

dt, T 5
H0

H

M0

M
, (3.6a)

K 5
H 2

2M0c
2 1

M0c
2

2
5

P 2

2M0

1 M0c
2 1 W 1

W 2

2M0c
2 1 V

H0

M0c
2 1

V 2

2M0c
2 .

(3.6b)

Assuming that the system is closed so that dH/dt 5 0, it follows that the

same is true when t is replaced by t and H by K (dK/d t 5 dK/dt ? dt/d t ). We

also have

d t i 5
mi c

2

H0i

dt Þ
d t i

d t
5

H0m i

MH0i

(3.6c)

and, as in (3.1),

dW

d t
5 o

n

i 5 1

- K

- pi

T
- W

- xi

2
- K

- xi

T
- W

- pi

5 {K, W }T . (3.6d)

Thus the total (conserved) system creates a natural geometric environment.

The following result relates the phase flows for the ({xi}, {pi}, t) and ({xi},

{pi}, t ) variables.

Theorem 3.3. There exist functions S ({xi}, {pi}, t ) and T ({xi}, {pi}, t )
such that

o
n

i 5 1
pi ? dxi 2 Hdt 5 o

n

i 5 1
pi ? dxi 2 K ? d t 1 dS. (3.7)

Proof. Setting dS 5 (mc2 2 K ) ? d t , we have the identity Hdt [ K ? d t
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2 dS. It is easy to show that dS is an exact 1-form (assuming dH/dt 5 0).

Since there is no change in the {xi}, {pi} variables, it follows from Theorem

3.2 that our transformation is (iso) canonical.
In a manner similar to that of Horwitz and Piron (1973), we can formulate

a dynamical principle which generalizes Hamilton’ s principle using our ver-

sion of the integral invariant of PoincareÂ±Cartan (3.7) (see Arnol’ d 1978):

I 5 R C o
n

i 5 1

pi ? dxi 2 K ? d t , (3.8a)

where C is a closed curve on extended (proper) phase space G 5 ({xi}, {pi},

t ), and the above integral is invariant for arbitrary deformations of C along

trajectories corresponding to solutions of the equations of motion. From (3.7),

we see that our approach also leads to a Lagrangian formulation. It can be

written as

L d t 5 o
n

i 5 1

pi ? dxi 2 K ? d t , (3.8b)

d

d t
- L

- vi
2 T

- L

- xi
5 0, vi 5

dxi

d t
. (3.8c)

Let our two inertial observers in frames X and X8 have (extended) phase

space coordinates ({xi}, {pi}, t) and ({x8i }, {p8i }, t8), respectively (for the
dynamics of the system of particles), and let P be the set of PoincareÂtransfor-

mations on space-time reference frames. We let C t denote the set of canonical

proper-time transformations defined on extended phase space. [Theorem 3.3

proves that C t is a group (canonical proper-time group).] Let the map from

({xi}, {pi}, t) to ({xi}, {pi}, t ) be denoted by C [{xi}, t, t ].

Theorem 3.4. The proper-time coordinates of the system as seen by an
observer at X are related to those of an observer at X8 by the transformation

RM0[{xi}, {x8i }, t ] 5 C [{x8i }, t8, t ]P(X, X8)C 2 1[{xi}, t, t ]. (3.9)

Proof. The proof follows since the diagram below is commutative:

X({xi}, {pi}, t) Ð ® X8({x8i}, {p8i}, t8)
P

C[t, t ] C[t8, t ]
½ ½
¯ ¯

R
X({xi}, {pi}, t ) Ð ® X8({x8i}, {p8i}, t ).

The top diagram is the PoincareÂmap P from X to X8. It is important to note
that this map is between coordinates of observers. In this sense, our approach

may be viewed as a direct generalization of the standard implementation.
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This means that we keep the invariance group of the underlying geometrical

manifold (PoincareÂ), while changing the invariance group for the dynamical

law to the proper-time group.
Theorem 3.4 proves that RM0 is in the proper-time group P t , which is

formed by a similarity action on the PoincareÂgroup by C t . Since t is related

to t via a nonlocal (nonlinear) transformation, it follows that this group is

not linear, and thus not covered in the Cartan classification. Fushchych and

Nikitin (1987) have shown that there exist PoincareÂtransformations that fix

the time for the free Maxwell equations (see also Fushchych and Shtelen,
1991). This result was shown to be a special case of our theory in Gill et
al (1996).

3.6. Global Systems Dynamics

The world view of the system as a whole is obtained by using the global
Hamiltonian (3.6) along with the global proper-time for the system and the

global canonical variables P and X (see below). From pi 5 mi ui 1 (ei /c)Ai

(ui 5 dxi /d t i), we get that P 5 S mi ui. Using (3.6), we have

U 5
dX

d t
5 T

- K

- P
5

P

M
, (3.10a)

U 5 1/M o
n

i 5 1

miui, (3.10b)

H0 5 Mc ! U2 1 c 2 5 Mcb. (3.10c)

The position for the system as a whole is implicitly defined by:

X 5 #
t

0

1

M o
n

i 5 1

m iui ( l ) d l 1 Y, (3.10d)

where Y is a vector with dY/d t 5 0. Using d t 5 Mc2/H0 dt and d t i 5 m i c
2/

H0i dt, we see that (3.10d) reduces to (vi 5 dxi /d t ):

X 5 #
t

0
o
n

i 5 1

H0i

H0

vi(s) ds 1 Y. (3.10e)

Since our canonical transformation only changed t and H in the noninteracting
case (A, V 5 0) we expect (Pauri and Prosperi, 1975):

X 5
1

H0
o
n

i 5 1
H0i xi ( t ) 1

c2(S 3 P)

H (Mc2 1 H )
, (3.10f)

where S can be viewed as the internal spin of the system of particles and P
is the total momentum. We thus get that (3.1f):
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{Xi , P j} 5 2 d ijT, (3.10g)

as expected. Note that in this case T 5 M0 /M [see equation (3.6a)]. It follows

that the global system induces geometric effects even when the particles are

not interacting. This is caused by our approach, which allows us to stay

on-mass-shell during interaction. Recall that the natural canonical position

operator in the many-particle case is not the vector part of a (Minkowski)
four-vector. This has been a major problem for any attempt to construct a

many-body relativistic theory. Since our theory does not require four-vectors

for its implementation, the problem disappears. An additional advantage is

that we are able to extend the principle of minimal interaction to the many-

body relativistic case.
In general, each H0i need not be constant, so we cannot integrate equation

(3.10e). Thus, X is composed of the standard weighted energy term plus a

term commuting with K. Assuming conservation of total energy, momentum,

and angular momentum, we choose Y such that X is the canonical center-
of-mass extended to include interactions [in the terminology of Pauri and

Prosperi (1975)].
Returning to equations (3.6b) and (3.6d), it is easy to show that:

dP

d t
5 2 o

n

i 5 1

- K

- xi

T 5
b

c H q

b 1 dA

d t
2

- A

- t 2 1
q

b
U 3 B 2 = V J , (3.11a)

so that:

c

b

d P

d t
5 H qE 1

q

b
U 3 B J , E 5 2

q

b

- A

- t
2 = F . (3.11b)

Note that we never use the global position vector X explicitly in computing

dP/d t , but equation (3.11a) implies that

dP

d t
5 2 o

n

i 5 1

- K

- xi

T 5 2 T
- K

- X
. (3.11c)

If M is conserved, we get that:

Mc

b

dU

d t
5 H qE 1

q

b
U 3 B J . (3.11d)

This equation expresses the global system evolution, and is a nonlinear
Lorentz force (in U ). Note that even if the global momentum is conserved

(dP/d t 5 0), dU/d t need not be zero.

Let us return to (3.6b) and note that the observable W has another

representation that relates the global system to the individual particle systems.

Using H 5 S Hj ,
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- H

- pi

5 o
n

j 5 1

- Hj

- pi

5 o
n

j 5 1

mjc
2

H0j

H0j

Hj

H j

m jc
2

- Hj

- pi

5 o
n

j 5 1

m jc
2

H0j

- Kj

- pi

Tj , (3.12a)

- H

- xi

5 o
n

j 5 1

- Hj

- xi

5 o
n

j 5 1

mjc
2

H0j

H0j

H j

Hj

mjc
2

- Hj

- xi

5 o
n

j 5 1

mjc
2

H0j

- Kj

- xi

Tj , (3.12b)

where Tj 5 H0j /Hj. Using (3.6c) for d t i /d t , our equations of motion become

dW

d t
5 {K, W }T 5 o

n

j 5 1

d t j

d t
{Kj , W }Tj , (3.13a)

Kj 5
H 2

j

2m jc
2 1

m jc
2

2
, (3.13b)

{Kj , W }Tj 5
dW

d t j

5 o
n

i 5 1

- Kj

- pi

Tj
- W

- xi

2
- Kj

- xi

Tj
- W

- pi

. (3.13c)

Equation (3.13a) is very important, because it relates the global systems

dynamics to the local systems dynamics and provides the basis for a direct
approach to the quantum many-body theory. The use of a many-times

approach is not new and dates back to Dirac et al (1932). Our approach is

close to that of Longhi et al (1986). As will be shown in a subsequent

publication, equation (3.13a) makes it possible to relate the individual quan-

tum systems to the global quantum system using one (universal) wave

function.

3.7. Global System Properties

Theorem 3.5. The dynamical laws of physics formulated using the canon-
ical proper-time implementation will be covariant for all observers.

Theorem 3.6. There is a many-particle direct-interaction theory with the

following properties:

1. The theory satisfies the first two postulates of special relativity.
2. The theory is based on Hamiltonian dynamics.

3. The theory is based on independent (canonical) particle variables.

It is known that replacement of the first condition with the requirement

of Lorentz covariance is only compatible with noninteracting particles. This

is the content of the no-interaction theorem (see Currie et al, 1963, and
references therein).

In the study of physical systems, one is interested in either the behavior

of the entire system or some subsystem. Experimental measurements are

made in this manner. The cluster decomposition property is a requirement
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of any theory purporting to be a possible representation of the real world.

Basically this is the property that, if any two or more subsystems become

widely separated, then they may be treated as independent systems (clusters).

Theorem 3.7. Let the above system be decomposed into two or more

clusters. Then there exists a (unique) proper-clock and canonical Hamiltonian

for each cluster.

Proof. We assume that the two subsystems are sufficiently separated

that all observers can agree that they are distinct. In this case, each observer
can identify masses M1 and M2 along with Hamiltonians H1 and H2. It follows

that d t 1 5 (M1c
2)/H1dt and d t 2 5 (M2c

2)/H2dt, so that each observer can

construct a (proper-time) relativistic theory for each cluster.

Theorem 3.7 is true without the assumption that the subsystems interact

weakly, so that we can consider collective systems based on the detailed
interactions of individual particles. This is less difficult than the various

phenomenological approaches, which require both model justification and

consistency analysis prior to use.

The following theorem tells us that, although there is no unique rest
frame for the universe, under very mild conditions it does have a unique
clock and Hamiltonian which is available to all observers.

Theorem 3.8. Assume that the universe has finite mass and energy, and

that each observer can choose a local inertial frame from which his region

of the universe is at rest relative to the observed system. Then there exists

a unique proper-clock and Hamiltonian for the universe.

Proof. Applying the cluster decomposition theorem, our observer can
identify masses M1 for his region of the universe and M2 for the complement

region, along with Hamiltonians H1 and H2. It follows that H 5 H1 1 H2,

M 5 M1 1 M2, and d t 5 (Mc2/H )dt define the global mass and Hamiltonian

for the universe. We can now construct our proper-time Hamiltonian K. Since

M and H are fixed and invariant for all observers, we see that both K and t
are unique and invariant for all observers. (Note that the M i and Hi will vary

with the observer, reflecting the nonuniqueness of inertial frames.) This proof

does not strictly adhere to our method and minor modifications are required

if we assume the masses depend on the particle variables (isotopes). The

final result will be the same.

Theorem 3.9. If the universe is not finite and does not have a finite
amount of energy, but we assume that the observable universe is representable

in the sense that the observed ratio of mass to energy is constant and indepen-

dent of our observed portion of the universe, then the universe has a

unique clock.
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Proof. The proof follows since d t 5 (Mc2/H )dt will be independent of

the representable portion of the universe.

It has been known for some time (Rowan-Robinson, 1996) that the

cosmic background radiation provides a frame in which the universe looks
isotropic. Furthermore, this frame is available to all observers.

4. LOCAL PARTICLE WORLD VIEW

4.1. Particle View

We now inquire as to the world view as seen by the ith particle in a

local sense. In this case, the particle is viewed as responding to a given field

with potentials A i and Vi. To obtain this view, we transform from the observer

clock to the proper-clock of the ith particle along with its proper-time Hamilto-
nian. From (3.13b), we have

Ki 5
p 2

i

2m i

1 mi c
2 1 Vi

H0i

mi c
2 1

V 2
i

2m i c
2 , (4.1a)

so from (3.13c) we have:

ui 5
dxi

d t i
5 o

j

- Ki

- pj
Ti d ij 5 Ti

- Ki

- pi
5

p i

mi
Þ pi 5 m iui 1

ei

c
A i . (4.1b)

Using standard elementary methods and notation, we get

dpi

d t i
5 2 o

j

- Ki

- xj
Ti d ij

5 2 Ti
- Ki

- xi

5
ei

c

dAi

d t i

2
ei

c

- Ai

- t i

2 ¹ i (Vi)
H0i

mi c
2 1

ei

c
ui 3 Bi , (4.2a)

or, using H0i /mic
2 5 ! 1 1 u2/c2 5 bi /c, we have

mi c

bi

dui

d t i

5 H eiEi 1
ei

bi

ui 3 Bi J 5 Fi , Ei 5 2
1

bi

- A i

- t i

2 = i F i , (4.2b)

We thus get a proper-time version of the Lorentz force. This is the force a

local observer would obtain using the proper-clock of the particle. This

equation is nonlinear in ui (because of the bi terms). It may cause some
concern that we have derived an equation that uses the proper-time and

yet is different from the one we get using the standard approach (which

parametrizes with the particle proper-time variable). Using (1/bi)( - / - t i) 5
(1/c)( - / - t) and wi/c 5 ui/bi (where wi 5 dxi/dt), we can write (4.2b) as:
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mi
dui

dt
5 H eiEi 1

ei

c
wi 3 Bi J , Ei 5 2

1

c

- Ai

- t
2 = i F i . (4.2c)

It follows that (4.2c) is completely equivalent to (4.2b) mathematically. They
are clearly not physically equivalent since the neighborhood of the particle
is curved due to the interaction of the particle field with the external field.

Equations (4.2c) and (4.2b) do not include a dissipation term which

accounts for the observed radiation of accelerated charges. This radiation is

known to occur instantaneously with acceleration and its nature has been the

object of much speculation (Wheeler and Feynman, 1945). In the standard
approach, Maxwell’ s equations (for the fields of the ith particle) are used to

compute the energy radiated from a tube along the world line of the particle.

The negative of the computed term is added to the Lorentz force [the right-

hand side of (4.2c)] to provide the appropriate dissipation term, which leads

to the Lorentz±Dirac equation. This approach was first used by Dirac (1938).

See Rohrlich (1965) for a comprehensive overview of the classical theory
up to that time including a complete review of the history of the subject.

Rohrlich (1997) provides a more recent review which is highly enlightening

for those unaware of the continuing effort to solve the classical electron

problem. Another recent critical review of the problems can be found in de

Souza (1987). See Yaghjian (1992), Parrott and Endres (1995), and Trump
and Schieve (1997) for related issues.

Finally, note that in computing (4.1b) and (4.2a) we have used the

canonical variables for all the particles in the system (universe) and yet they

have no impact on the expressions for the velocity and force on the ith
particle. In this sense, they may be considered ª hidden variables.º In Section

5, we will return to this problem and show that, on the global level, they are
not hidden.

4.2. Field View

There have been a number of attempts to generalize either Maxwell’ s
equations, the Lorentz force, or both. Ritz (1908a) wanted to eliminate the

fields completely and replace them by ª elementary (retarded) actions.º Dris-

call (1992, 1997a,b) has recently proposed a revised version of the Ritz

theory. Wheeler and Feynman (1949) revived the action-at-a-distance theory

of Schwarzschild (1903), Tetrode (1922), and Fokker (1929a,b, 1932) in

order to construct a theory that could lead to a better understanding of the
problems at the quantum level. This approach had a direct impact on Feyn-

man’ s later work on QED (Feynman, 1948). That Feynman was looking for

a generalization of classical electrodynamics is witnessed by a paper of Dyson

(1990). In 1948, Feynman showed Dyson that the Lorentz force and the
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homogeneous Maxwell equations could be obtained using the canonical com-

mutation relations between the vector parts of the coordinates and velocities.

Motivated by the Dyson paper, Tanimura (1992) constructed a Lorentz-
covariant generalization of Feynman’ s approach. It was shown by Land et
al (1995) that, within the framework of the (five-dimensional) proper-time

method, Tanimura’ s theory does not lead to the usual Maxwell equations for

a number of important reasons. When corrected, his theory corresponds to

that of Saad et al (1989). Their theory is derived from the Horwitz±Piron

(1973) Stueckelberg-type quantum theory. Dirac (1951a,b) also returned to
the classical electron problem and was never completely satisfied with the

current formulation.

In our approach, we have replaced t by t and acquired K as its canonical

Hamiltonian, so that t becomes both our coordinate time and evolution

parameter. It was noted by Santilli (private communication) that this is equiva-

lent to imposing a constraint on the Horwitz±Piron clock and has the same
effect on the corresponding group theory of Aghassi et al (1970a,b).

In order to write Maxwell’ s equations using the proper-time of the

source, we began with the following theorem, which follows directly from

the proper-time group [equations (1.6a) and (1.6b)].

Theorem 4.1. If we set b2 5 (u2 1 c2), then we have (1)

w

c
5

u

b
, ¹ X 5 g (v)[ ¹ X8 2 (v/c2) d (u8) 2 1 - t ], (4.3a)

1

c
- t 5

1

b
- t , - t 5 g (v)( d (u8) 2 1 - t 2 v ? ¹ X8); (4.3b)

and (2) Maxwell’ s equations as seen from X for the field of the source are

= ? B 5 0, = ? E 5 4 p r ,

= 3 E 5 2
1

b

- B

- t
, = 3 B 5

1

b F - E

- t
1 4 p r u G . (4.4)

We see that the velocity of electromagnetic waves with respect to t depends
on the motion of the source, and their magnitude is always larger than c
(but less than b). This observation may seem strange and even contradictory

to the second postulate, but it is not. On closer inspection, we realize that

the second postulate refers to the observer ’ s point of view using his measuring
rods and clock. There is no contradiction since we are using the observer ’ s

measuring rods and the clock of the source. The important point is that the
dependence of the speed of light on the motion of the source reflects a choice
of conventions in formulating physical theory. We will discuss this point later.
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In the Michelson±Morley experiment, the source is at rest in the frame

of the observer so that u 5 0 and b 5 c. It follows that our approach explains

the Michelson±Morley null result. It also provides agreement with the concep-
tual (but not technical) framework proposed by Ritz (1908a); namely, that

the speed of light depends on the (proper) motion of the source. In this sense,

both Einstein and Ritz were correct. The next result was proven by Gill et
al (1997). However, it follows from the same calculations as in Einstein

(1905), using (4.3a) and (4.3b).

Theorem 4.2. Maxwell’ s equations are covariant under the proper-
time group.

Let us now inquire as to the nature of the fields which act on the ith
particle to cause its motion. For the action of the jth particle on the ith
particle, equations (4.4) become

= j ? Bij 5 0, = j ? Eij 5 4 p r j ,

= j 3 Eij 5 2
1

bj

- Bij

- t j

,= j 3 Bij 5
1

bj F - Eij

- t j

1 4 p r juj G .
(4.5)

In what follows, we will suppress the indices until the end of the section,

with the understanding that they refer to the action of the jth particle on the
ith particle. Returning to (4.5), we perform the standard manipulations, using

E 5 2
1

b

- A

- t
2 = F , B 5 = 3 A, (4.6)

to obtain

= F = ? A 1
1

b

- F
- t G 1

1

b

-
- t F 1

b

- A

- t G 2 = 2A 5
1

b
(4 p J ), (4.7)

and

2 = 2 F 2
1

b

-
- t

[ = ? A] 5 4 p r . (4.8)

Imposing the (proper-time) Lorentz gauge

= ? A 1
1

b

- F
- t

5 0, (4.9)
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we get the wave equations

1

b

-
- t F 1

b

- A

- t G 2 = 2A 5
1

b
(4 p J ), (4.10a)

1

b

-
- t F 1

b

- F
- t G 2 = 2 F 5 4 p r . (4.10b)

Straightforward calculations with (4.10b) lead to an equation of the form

2 = 2 F 2
1

b 4 F u ?
du

d t G - F
- t

1
1

b 2

- 2 F
- t 2 5 4 p r . (4.11a)

We get a similar equation for A.

We get the same form for the equations if we derive them directly

without using potentials (see Section 5.2). The second term on the left-hand
side of equation (4.11) is a dissipative part of the wave equation. It is zero

if u is constant and arises instantaneously with acceleration. This is what we

expect of a radiation reaction (Wheeler and Feynman, 1945). It is also of

interest to observe that we have made no assumptions about the structure of

the source. It is easy to see that the dissipative part of (4.11a) can be written

using the observer ’ s clock as

2
1

b 4 F u ?
du

d t G 5 2
wi ? wÇ i

! 1 2 (wi /c)2
. (4.11b)

In order to solve (4.11a), the simplest assumption is that a2 5 2 1/b2[u ? du/

d t ] and 1/b2 may be treated as constants (take mean square averages). We

can then obtain the Green’ s function from:

2 = 2G 1
a2

b2

- G

- t
1

1

b2

- 2G

- t 2 5 4 p d (r 2 r0) d ( t 2 t 0). (4.12a)

If R 5 | r 2 r0 | and t 5 t 2 t 0, the solution (Morse and Feshbach, 1953, p.

868) is

G(R, t) 5 G1(R, t) 1 G2(R, t),

G1(R, t) 5 1/R exp H 2
1

2
a2t J d (t 2 R/b), (4.12b)

G2(R, t) 5 2 a2[2bh(R, t)] 2 1 exp H 2
1

2
a2t J I1 F 1

2
a2h(R, t) G U(bt 2 R),
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with

h(R, t) 5 (t2 2 R2/b2)1/2, U(x) 5 H 5 0, x , 0

5 1, x $ 0
(4.12c)

representing the step function, and I1 is a modified Bessel function,

I1(x) 5 2 iJ1(ix).

Both terms arise because of our use of the proper-clock and will never
appear in the frame of a comoving observer. The first term is Yukawa-like

and shows that acceleration creates an effective mass for the field of the

source. A number of writers (de Broglie, 1940; SchroÈ dinger and Bass, 1955;

Costa de Beauregard (1997a,b) have called into question the (identically)

zero nature of the photon mass.

The second term may be viewed as a wake that moves out from the
particle and represents an inertial drag created by the particle’s resistance to

acceleration. Note that both terms in (4.12b) carry intrinsic information about

the source, so that if the wave is split (as for example in the Aspect et al
(1982) experiment, the two resulting waves will always be correlated.

In order to gain further insight, set F 5 (b /c)1/2g so that our equation

is transformed to

1

b 2

- 2g

- t 2 2 = 2g 1 F bÈ

2b3 2
5bÇ 2

4b4 G g 5 4 p d (r 2 r0) d ( t 2 t 0). (4.13a)

We can write the last term on the left-hand side of (4.12) as:

m 2 5 F bÈ

2b3 2
5bÇ 2

4b4 G 5 F (uÇ )2

2b4 1
u ? uÈ

2b4 2
5(u ? uÇ )2

4b6 G . (4.13b)

Independently of the resemblance of (4.13a) to the Klein±Gordon equation,
classical field equations of this type arise in the study of a flexible string

embedded in a thin rubber sheet with additional stiffness forces coming from

the rubber. In this case the string experiences another restoring force, caused

by the rubber, along its length. By analogy then, we may interpret the field

equations as providing a ª virtual mediumº which acts instantaneously to

resist attempts by the particle to accelerate. This virtual medium (the particle’s
self-field) could certainly be called the source of the (electromagnetic) inertial
reaction to attempts to accelerate the particle.

Let us assume that m 2 and 1/b may be (approximately) treated as con-

stants. Then, as before, we have g(R, t) 5 g1(R, t) 1 g2(R, t), with
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g1(R, t) 5
1

R
d 1 t 2 1 Rb 2 2 ,

g2(R, t) 5
2 m

! t2 2 1 Rb 2
2

L1 F m b ! t 2 2 1 Rb 2
2 G U(bt 2 R), (4.14)

U(x) 5 H 0, x , 0

1, x . 0
, R 5 | r 2 r0 | , t 5 t 2 t 0,

and L1 5 J1 if m 2 . 0 and L1 5 I1 if m 2 , 0. It is important to note that

L1(z)/z has a constant value at z 5 0. Thus, at t 2 t 0 5 (R/b)+, g2 has the

value 2 a m , where a is a constant (the plus sign means that t 2 t 0 approaches

R/b from the right). Since we have used an approximation to solve equation

(4.12), we cannot go too far with the physical interpretation. However, the

above argument seems to indicate strongly that the effective mass part travels

outward in a radial direction and can be viewed as the photon part of the

field. This effective mass will increase with acceleration of the source, so

that this term will act more and more like a particle. This term provides

precisely the behavior predicted by Ritz (1980a,b) (see also Ehrenfest, 1912).

We can integrate to get that (R 5 | r 2 r0 | , t 5 t 2 t 0):

F (r, t ) 5
1

4 p #
t

0 1 bc 2
1/2

d t 0 # R3
dr0[g1(R, t) 1 g2(R, t)] r (r0, t 0)

5 F 1 1 F 2, (4.15a)

A 5 (u/b)[ F 1(r, t ) 1 F 2(r, t )]; (4.15b)

where, as before, t 5 t 2 t 0. Reverting back to our indices, we can write

the equations for the potentials which generate the total fields caused by

other particles (acting on the ith particle) as F i (ri , t ) 5 F i1 1 F i2,

F i1 5
1

2 o
n

j 5 1
j Þ i

F ij1(rij, t i), F i2 5
1

2 o
n

j 5 1
j Þ i

F ij2(rij, t i), (4.16a)

Aij(rij, t i) 5
ui

bi

[ F ij1(rij, t i) 1 F ij2(rij, t i)]. (4.16b)

We must still compute the individual fields from each particle to get the total

field which causes the ith particle to accelerate. That is,
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Ei 5 2
1

bi

-
- t i 1 o nj 5 1

j Þ i

Aij(rij, t i) 2 2 = i ( F i), (4.17a)

Bi 5 o
n

j 5 1
j Þ i

¹ i 3 A ij(rij, t i). (4.17b)

To the above equations we must add the Lorentz force (4.2c) to get the

complete picture from the local point of view. In closing this section, we

recognize that our results are based on qualitative analysis and hence do not

provide quantitative information. We will consider particular cases at a later

time after a complete analysis of the Green’ s function corresponding to (4.10)
has been finished. The most important points are that, in general, the field

equations are dissipative and they carry intrinsic information about the veloc-

ity and acceleration of the source.

5. GLOBAL PARTICLE WORLD VIEW

5.1. Particle View

We now look at the dynamics of the ith particle from the global point

of view. This means that we use the individual particle variables and the
proper-time of the global system. It is this view that represents new physics

and helps us to understand how the global system controls the local dynamics.

Theorem 5.1. Assuming that Ki has no explicit dependence on t i , we have

dKi /d t i 5 0, dK/d t Þ 0. (5.1a)

Proof. It is easy to see that dKi /d t i 5 0. From (3.6), we have

vi 5
dxi

d t
5 T

- Ki

- pi

5
d t i

d t
Ti

- Ki

- pi

5
d t i

d t
p i

mi

Þ (5.1b)

dKi

d t
5 o

n

i 5 1

(vj ? = j)Ki 1 T 2 1
i

dpi

d t
? ui Þ 0. (5.1c)

It follows that, from the global point of view, the ith particle does not conserve
energy. For the force we have

dpi

d t
5 2 T

- K

- xi

5 2 o
n

j 5 1

d t j

d t
Tj

- Kj

- xi

5 o
n

j 5 1

d t j

d t H ej

c
[(uj ? = i)Aj 1 uj 3 ( = i 3 A j)] 2

bj

c
= i (Vj) J . (5.2)

From cdt 5 bi d t i and cdt 5 bd t we get that
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d t i

d t
5

b

bi

. (5.3)

Using (3.4), (3.13), and (5.3), assuming that there are no (global) external

fields, we have that

vi 5
b

bi

ui, (5.4a)

= iAj 5 2 = jAji, = iAi 5 o
n

j Þ i
= iA ij, (5.4b)

= i Vj 5 2 = jVji, = iVi 5 o
n

j Þ i
= i Vij. (5.4c)

Setting Bij 5 = i 3 Aij and using

(vj ? = j)Aji 5
dAji

d t
2

- A ji

- t
, (5.4d)

we can write (5.2) as

c

b

dpi

d t
5 o

n

j Þ i 1 ei

b

dA ij

d t
2

ej

b

dA ji

d t 2 1 o
n

j Þ i
(Fij 2 Fji), (5.5a)

where Eij 5 2 (1/b)dAij /d t 2 = i ( F i) and Fij 5 eiEij 1 (ei /b)vi 3 Bij.

It follows from (5.5a) that

dP

d t
5 o

n

i 5 1

dpi

d t
5 0, (5.5b)

so that we automatically get conservation of momentum. Note that:

o
n

j Þ i

ei

b

dAij

d t
1 o

n

j Þ i
Fij 5

ei

b

dAi

d t
1 F i), (5.6a)

so that we can write (5.5a) as

c

b

dpi

d t
5

ei

b

dAi

d t
1 Fi 2 o

n

j Þ i 1 ej

b

dA ji

d t
1 Fji 2 . (5.6b)

Since pi 5 miui 1 ei /cAi , we also see that
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m i c

b

dui

d t
5 Fi 2 o

n

j Þ i H Fji 1
ei

b

dA ji

d t J , (5.7)

Fi 5 H eiEi 1
ei

b
vi 3 Bi J , Ei 5 2

1

b

- Ai

- t
2 = i ( F i), (5.8)

where now

F i (ri , t ) 5 F i1 1 F i2, (5.9)

F i1 5 o
n

j 5 1
j Þ i

F ij1(rij, t ), F i2 5 o
n

j 5 1
j Þ i

F ij2(rij, t ), (5.10)

Aij(rij, t ) 5
vi

b
[ F ij1(rij, t ) 1 F ij2(rij, t )]. (5.11)

Comparing with (4.2c),

mi c

bi

dui

d t i

5 H ei Ei 1
ei

bi

ui 3 Bi J 5 F i , Ei 5 2
1

bi

- Ai

- t i

2 = i ( F i),

we see that the force Fi in (5.7) is of the same form as in (4.2c) with

(1/bi)( - / - t i) replaced by (1/b)( - / - t ). Since (1/bi)( - / - t i) 5 (1/b)( - / - t ) and ui /

bi 5 vi /b, they are equal. With equation (5.7), we see that the addtional terms
are the long-sought reaction force of the ith particle on all other particles in

the system (Newton’ s third law). It is these terms which carry away the

energy of radiation caused by the external forces that act on the ith particle.

Recall that these terms are functions of the velocity and acceleration of the

ith particle.

The following physical picture arises. When the proper-clock of the
particle is used, we get the correct fields because they are local effects.

However, when we compute the force equation, we only get the local part.

When we compute the force equation using the proper-clock for the system,

we obtain the long-sought dissipative term directly.

Before finishing this section, let us note that we have used ui on the

left-hand side of (5.7) so that a clear comparison can be made. In order to
see the full impact of the global system on the local dynamics, we use ui/bi

5 vi/b to solve for ui in terms of vi , so that

ui 5
cvi

! b 2 2 v2
i

, bi 5
cb

! b 2 2 v2
i

,
bi

b
5

c

! b 2 2 v2
i

. (5.12)

From (3.10c) we know that b 2 5 U2 1 c 2, so that
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mi
dui

d t
5

m i c

! b 2 2 v2
i

dvi

d t
2

mi cvi

! b 2 2 v2
i
H U ?

dU

d t
2 vi ?

dvi

d t J . (5.13a)

Combining (5.7b) and (5.13a), we have:

c

b

mi c

! b 2 2 v2
i

dvi

d t
2

c

b

mi cvi

! b 2 2 v2
i
H U ?

dU

d t
2 vi ?

dvi

d t J
5 Fi 2 o

n

j Þ i H Fji 1
ej

b

dA ji

d t J . (5.13b)

Note that from (5.12), the fact that b 2 5 U2 1 c 2, and since b . c, that vi

can be larger than c. If dM/d t and dU/d t are both zero, this still does not

imply that U is zero, so that it is still possible for the velocity of a particle

to be faster than the speed of light (relative to the source). Assuming U is

zero implies that b 5 c, so our equations become ( b i 5 vi/c)

m i

! 1 2 b 2
i

dvi

d t
1

m i

!
3

1 2 b 2
i
H vi ?

dvi

d t J vi

5 Fi 2 o
n

j Þ i H Fji 1
ej

c

dAji

d t J . (5.13c)

In this case, the global system appears at rest in the frame of reference of
our observer. Even here, we get a theory that is distinct from the standard

approach in that we have the dissipation term without any additional work.

Assume that dA ji/d t 5 0 and notice that, in the general case, the work done

by (5.13b) can be written as [using (5.12)]:

1

2
mi c

2 ! 1 2 v2
i /b 2 d

d t 1 vi

! b 2 2 v2
i 2

2

5 H vi ? Fi 2 o
n

j Þ i
vi ? Fji J . (5.13d)

Although vi is orthogonal to vi 3 Bi , it is not orthogonal to vj 3 Bji so the

above equation becomes:

1

2
mi c

2 ! 1 2 v2
i /b 2 d

d t 1 vi

! b 2 2 v2
i 2

2

5 eivi ? Ei 2 o
n

j Þ i
{ejvi ? Eji 1 (ejvi/b) ? vj 3 Bji}. (5.13e)

The left-hand side of (5.13e) is the effective kinetic energy of the ith particle.

It follows that the energy loss due to radiation is a very complicated process
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and can only be understood in simple cases (assuming exact solutions for

the field equations).

5.2. Global Field View

It should be noted that equations (5.8)±(5.11) were obtained by replacing
ui /bi by vi /b. This reflects the fact that radiation is a local effect and must

be computed using the proper-time of the particle involved. On the other

hand, a true picture of the particle dynamics requires the use of the global

proper-time. It follows that the complete picture requires both the individual

and global proper-time variables. Furthermore, these are the only unique

variables intrinsic to the system and available to all observers.
Let us now derive the field equations by directly using the global proper-

time variable. Using 1/c - t 5 1/b - t , we write Maxwell’ s equations at any

point in the domain:

= ? B 5 0, = ? E 5 4 p r ,

(5.14)

= 3 E 5 2
1

b

- B

- t
, = 3 B 5

1

b F - E

- t
1 4 p J G ,

where now r and J represent the charge and current density at the site of
concern. Using standard identities and noting that b depends on U, these

equations lead to

1

b

-
- t F 1

b

- E

- t G 2 = 2E 5 2 = (4 p r ) 2
1

b

-
- t F 4 p J

b G ,

(5.15)

1

b

-
- t F 1

b

- B

- t G 2 = 2B 5
1

b

-
- t F 4 p ¹ 3 J

b G .

This last equation can also be written as

1

b 2

- 2E

- t 2 2 1 U

b4 ?
dU

d t 2 - E

- t
2 = 2E 5 2 = (4 p r ) 2

1

b

-
- t F 4 p J

b G , (5.16)

1

b 2

- 2B

- t 2 2 1 U

b 4 ?
dU

d t 2 - B

- t
2 = 2B 5

1

b

-
- t F 4 p ¹ 3 J

b G . (5.17)

From (5.16) and (5.17) we see that, from the global point of view, the fields
dissipate energy (radiation) at every point in the domain of the system. Since

U 5 1/M ( mjuj , this radiation depends on the average of the (proper) motion

of all the particles in the system. As this term includes ui for each i, all

particles in the system will experience a self-interaction as part of this average.
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The radiation will appear thoughout the domain of the system and this implies

that each particle lives in a heat bath which includes some of its own radiation.

It is certainly of interest to note that the 2.7 K background radiation is
found to pervade the whole universe. The above would lead us to suggest

that this radiation is caused by the average of the motion of all the particles

in the universe. Furthermore, this would provide a simple resolution for

two of Rowan-Robinson’ s 20 controversies in cosmology without inflation

(Rowan-Robinson, 1996).

The first controversy (Rowan-Robinson, #4), is related to the high degree
of isotropy of the microwave background radiation on all scales (the limit

of anisotropy is 10 2 3%). The measured speed of our galaxy through this

radiation is about 600 km s 2 1, and it provides an isotropic frame of reference

at every point in the universe. This implies that both the velocity and accelera-

tion of this frame are fixed and hence goes much farther than general relativity

allows (e.g., an infinite number of freely falling frames). Note that from
Theorem 3.8 we have d t 5 (Mc2/H )dt. Since (Mc2/H ) is assumed constant,

we get t (H /Mc2) 5 t, or t 5 (U 2 1 c 2)1/2 t . Since t is fixed, we see that U
is fixed for all observers. However, even if the conditions of Theorem 3.8

are not satisfied, our analysis of the global fields (5.16) and (5.17) still

provides a simple explanation for the background radiation and why it is
so isotropic.

The second controversy (Rowan-Robinson, #6) is the horizon problem

and inflation. ª When we look at the microwave background radiation in two

opposite directions on the sky, we are looking back at regions that, . . . , have

never been in communication. . . . How did these regions come to be so

similar to each other, satisfying homogeneity and isotropy to one part in
100,000?º In our interpretation, neither inflation nor the big bang model is

required to explain the uniformity of the background radiation.

5.3. Time Arrow

Since d t 5 (mc2/H )dt, K 5 [H 2/2mc2 1 mc2/2], we see that, if t ® 2 t
(time reversal), then K ® K is invariant, while t ® 2 t . On the other hand,

if H ® 2 H, then mc2 ® 2 mc2, so that K ® 2 K. In this case, our Poisson

bracket is invariant, as p ® 2 p (e.g., {,} ® {,}). In either case, the equations

of motion are invariant, so that there is no gain in exploiting the two possible

signs when taking the square root for equation (1.3). Thus, our particle theory

is invariant under time reversal.
As noted earlier, the field equations carry intrinsic information about

the velocity and acceleration of the particles. Since this information is about

the past behavior of the particles, reversing the proper-time of the particles

no longer corresponds to an equivalent physical process run backward. Such
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an operation now corresponds to specifying the future behavior of the velocity

and acceleration of the particle variables (explicitly). Since the global fields

deposit radiation thoughout the domain of the system, time reversal would
correspond to radiation leaving each part of the domain and collecting on

the particles. This is certainly mathematically possible, but does not represent

physics as we know it. It follows that we must use retarded fields and
potentials so that the field equations introduce an arrow for time. We note

that the discovery of time-reversal noninvariance in K0 decay is now over

30 years old (Kabir, 1968) and no satisfactory explanation has been found.
It is interesting that this very issue was the cause of a debate between

Einstein and Ritz in 1908 (Fritzius, 1990). Einstein contended that one could

use both the retarded and advanced potentials and that the time arrow is

caused by considerations of a statistical nature. Ritz maintained that only

retarded potentials are justified because the irreversibility of radiation pro-

cesses is basic.
In our formulation, it is thus natural to interpret antimatter as matter

with its proper-time reversed. If our theory is correct, there is no antimatter

in our universe except that which is created by extreme conditions (e.g.,

black holes, supernovas, etc.) and its existence can be considered virtual. A

complete discussion requires the introduction of Santilli’ s (1993b) isodual
numbers in which the unit 1 is replaced by 2 1 and ab ® a * b 5 2 ab, so

that ( 2 1) * ( 2 1) 5 2 1. This allows for a completely symmetric theory of

matter (and numbers) which avoids all of the objections to hole theory. We

will discuss this completely as a part of our approach to the foundations of

relativistic quantum theory.

The arrow of historical time has been discussed extensively by Fanchi
(1993); (see also Fanchi, 1987) and by Horwitz et al (1989). Both Feynman

(1948) and StuÈ ckelberg (1942) introduced the notion of representing antimat-

ter as matter with its time reversed. Our final conclusion is the same as theirs.

However, the two approaches are distinct. In our approach, we replace t by

t and acquire K as its canonical Hamiltonian, so that t becomes both our

coordinate time and evolution parameter. In their approach, they retain t and
H and introduce t as an evolution parameter. This allows them to let d /d t
(in the four-vector sense) maintain the role of a Lorentz-invariant (operator-

valued) quantity.

6. CONCLUSION

We have constructed a direct implementation of the first two postulates

of the special theory of relativity that fixes the proper-time of the particle

variables for all observers. This approach provides a natural generalization

of Maxwell’ s equations which depends on the motion of the sources. The
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resulting wave equations contain a damping term and explains radiation

reaction as inertial resistance to acceleration. It is shown that (in our approach)

the speed of light depends on the motion of the source as suggested by Ritz
(1908) and is not in contradiction with the second postulate. The dependence

of the field equations on the past motion of the sources makes the theory

noninvariant under time reversal, producing an arrow for time at the classi-

cal level.

It should also be clear that the Minkowski decision to use proper-time

as a parameter and and to implement the two postulates of Einstein using
four-vectors is a convention which does not uniquely determine the theory.

We now have two distinct approaches to the implementation of Einstein’ s

two postulates. In the Minkowski case, an additional postulate is required.

In the proper-time approach, an additional postulate of a completely different

nature is required; namely, that the local geometry changes isotopically when

interaction is turned on. This approach allows us to solve in a direct way a
number of unsolvable and/or intractable problems in the Minkowski approach.

Although there is much to be done, it is clear that we have a general framework

that allows us to think about problems in the special theory of relativity that

are closer to the way physical reality appears to our consciousness. In Table

I, we compare the Minkowski and the proper-time implementations.
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